Média móvel Este exemplo ensina como calcular a média móvel de uma série temporal no Excel. Um avanço em movimento é usado para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Observação: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Input Range e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para intervalo 2 e intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Quanto menor o intervalo, mais próximas as médias móveis são para os pontos de dados reais. Você gosta deste site gratuito Por favor, compartilhe esta página no GoogleQuando computar uma média móvel em execução, colocando a média no período de tempo médio faz sentido No exemplo anterior, calculamos a média dos primeiros 3 períodos de tempo e colocá-lo próximo ao período 3. Poderíamos ter colocado a média no meio do intervalo de tempo de três períodos, ou seja, próximo ao período 2. Isso funciona bem com períodos de tempo ímpar, mas não é tão bom para mesmo períodos de tempo. Então, onde colocamos a primeira média móvel quando M 4 Tecnicamente, a Média Móvel cairá em t 2,5, 3,5. Para evitar esse problema, suavizamos as MAs usando M 2. Assim, suavizamos os valores alisados Se nós tivermos um número médio de termos, precisamos suavizar os valores suavizados A tabela a seguir mostra os resultados usando M 4. Médias de Mudar: O que São Entre os indicadores técnicos mais populares, as médias móveis são usadas para medir a direção da tendência atual. Cada tipo de média móvel (normalmente escrito neste tutorial como MA) é um resultado matemático que é calculado pela média de um número de pontos de dados passados. Uma vez determinada, a média resultante é então plotada em um gráfico, a fim de permitir que os comerciantes olhar para os dados suavizados, em vez de se concentrar nas flutuações do preço do dia-a-dia que são inerentes a todos os mercados financeiros. A forma mais simples de uma média móvel, apropriadamente conhecida como média móvel simples (SMA), é calculada tomando-se a média aritmética de um dado conjunto de valores. Por exemplo, para calcular uma média móvel básica de 10 dias, você adicionaria os preços de fechamento dos últimos 10 dias e dividiria o resultado por 10. Na Figura 1, a soma dos preços dos últimos 10 dias (110) é Dividido pelo número de dias (10) para chegar à média de 10 dias. Se um comerciante deseja ver uma média de 50 dias, em vez disso, o mesmo tipo de cálculo seria feito, mas incluiria os preços nos últimos 50 dias. A média resultante abaixo (11) leva em consideração os últimos 10 pontos de dados, a fim de dar aos comerciantes uma idéia de como um ativo é fixado o preço em relação aos últimos 10 dias. Talvez você está se perguntando por que os comerciantes técnicos chamam essa ferramenta de uma média móvel e não apenas uma média regular. A resposta é que, à medida que novos valores se tornam disponíveis, os pontos de dados mais antigos devem ser eliminados do conjunto e novos pontos de dados devem entrar para substituí-los. Assim, o conjunto de dados está em constante movimento para contabilizar novos dados à medida que se torna disponível. Esse método de cálculo garante que apenas as informações atuais estão sendo contabilizadas. Na Figura 2, uma vez que o novo valor de 5 é adicionado ao conjunto, a caixa vermelha (representando os últimos 10 pontos de dados) move-se para a direita eo último valor de 15 é eliminado do cálculo. Como o valor relativamente pequeno de 5 substitui o valor alto de 15, você esperaria ver a média da diminuição do conjunto de dados, o que faz, nesse caso de 11 para 10. O que as médias móveis parecem uma vez? MA foram calculados, eles são plotados em um gráfico e, em seguida, conectado para criar uma linha média móvel. Essas linhas curvas são comuns nos gráficos de comerciantes técnicos, mas como eles são usados podem variar drasticamente (mais sobre isso mais tarde). Como você pode ver na Figura 3, é possível adicionar mais de uma média móvel a qualquer gráfico ajustando o número de períodos de tempo usados no cálculo. Essas linhas curvas podem parecer distrativas ou confusas no início, mas você vai crescer acostumado com eles como o tempo passa. A linha vermelha é simplesmente o preço médio nos últimos 50 dias, enquanto a linha azul é o preço médio nos últimos 100 dias. Agora que você entende o que é uma média móvel e como ela se parece, bem introduzir um tipo diferente de média móvel e examinar como ele difere da média móvel simples mencionada anteriormente. A média móvel simples é extremamente popular entre os comerciantes, mas como todos os indicadores técnicos, tem seus críticos. Muitos indivíduos argumentam que a utilidade do SMA é limitada porque cada ponto na série de dados é ponderado o mesmo, independentemente de onde ele ocorre na seqüência. Críticos argumentam que os dados mais recentes são mais significativos do que os dados mais antigos e devem ter uma maior influência no resultado final. Em resposta a essa crítica, os comerciantes começaram a dar mais peso aos dados recentes, o que desde então levou à invenção de vários tipos de novas médias, a mais popular das quais é a média móvel exponencial (EMA). Média móvel exponencial A média móvel exponencial é um tipo de média móvel que dá mais peso aos preços recentes na tentativa de torná-lo mais responsivo Novas informações. Aprender a equação um pouco complicada para o cálculo de um EMA pode ser desnecessário para muitos comerciantes, uma vez que quase todos os pacotes gráficos fazer os cálculos para você. No entanto, para você geeks matemática lá fora, aqui está a equação EMA: Ao usar a fórmula para calcular o primeiro ponto da EMA, você pode notar que não há valor disponível para usar como o EMA anterior. Este pequeno problema pode ser resolvido iniciando o cálculo com uma média móvel simples e continuando com a fórmula acima a partir daí. Fornecemos uma planilha de exemplo que inclui exemplos reais de como calcular uma média móvel simples e uma média móvel exponencial. A diferença entre o EMA e SMA Agora que você tem uma melhor compreensão de como o SMA eo EMA são calculados, vamos dar uma olhada em como essas médias são diferentes. Ao olhar para o cálculo da EMA, você vai notar que mais ênfase é colocada sobre os pontos de dados recentes, tornando-se um tipo de média ponderada. Na Figura 5, o número de períodos utilizados em cada média é idêntico (15), mas a EMA responde mais rapidamente à variação dos preços. Observe como a EMA tem um valor maior quando o preço está subindo, e cai mais rápido do que o SMA quando o preço está em declínio. Esta responsividade é a principal razão pela qual muitos comerciantes preferem usar o EMA sobre o SMA. O que significam os diferentes dias As médias móveis são um indicador totalmente personalizável, o que significa que o usuário pode escolher livremente o período de tempo que desejar ao criar a média. Os períodos de tempo mais comuns utilizados nas médias móveis são 15, 20, 30, 50, 100 e 200 dias. Quanto menor o intervalo de tempo usado para criar a média, mais sensível será às mudanças de preços. Quanto mais tempo o intervalo de tempo, menos sensível ou mais suavizado, a média será. Não há um frame de tempo certo para usar ao configurar suas médias móveis. A melhor maneira de descobrir qual funciona melhor para você é experimentar com uma série de diferentes períodos de tempo até encontrar um que se adapta à sua estratégia. Médias móveis: como usá-los Subscreva a notícia para usar-se para os insights e a análise os mais atrasados Agradecimentos para assinar acima ao Investopedia Insights - notícia a usar.6.2 Médias móveis mili 40 elecsales, ordem 5 41 Na segunda coluna desta tabela, uma movimentação É mostrada a média da ordem 5, fornecendo uma estimativa do ciclo tendencial. O primeiro valor nesta coluna é a média das cinco primeiras observações (1989-1993) o segundo valor na coluna 5-MA é a média dos valores 1990-1994 e assim por diante. Cada valor na coluna 5-MA é a média das observações no período de cinco anos centrado no ano correspondente. Não há valores para os dois primeiros anos ou últimos dois anos porque não temos duas observações de cada lado. Na fórmula acima, a coluna 5-MA contém os valores de hat com k2. Para ver como é a estimativa do ciclo tendencial, traçamos o gráfico juntamente com os dados originais da Figura 6.7. Lote 40 elecsales, principal quotResidential vendas de eletricidade, ylab quotGWhquot. Observe como a tendência (em vermelho) é mais suave do que os dados originais e captura o movimento principal da série de tempo sem todas as pequenas flutuações. O método da média móvel não permite estimativas de T em que t está próximo das extremidades da série, portanto, a linha vermelha não se estende para os bordos do gráfico em qualquer lado. Mais tarde usaremos métodos mais sofisticados de estimativa de tendência-ciclo que permitem estimativas próximas aos pontos finais. A ordem da média móvel determina a suavidade da estimativa de tendência-ciclo. Em geral, uma ordem maior significa uma curva mais lisa. O gráfico a seguir mostra o efeito da alteração da ordem da média móvel para os dados de vendas de eletricidade residencial. As médias móveis simples como estas são normalmente de ordem ímpar (por exemplo, 3, 5, 7, etc.). Isto é assim que são simétricas: numa média móvel de ordem m2k1, há k observações anteriores, k observações posteriores e a observação do meio Que são médias. Mas se m fosse uniforme, não seria mais simétrico. Médias móveis de médias móveis É possível aplicar uma média móvel a uma média móvel. Uma razão para fazer isso é fazer uma média móvel de ordem uniforme simétrica. Por exemplo, podemos pegar uma média móvel de ordem 4 e, em seguida, aplicar outra média móvel de ordem 2 aos resultados. Na Tabela 6.2, isto foi feito para os primeiros anos dos dados da produção de cerveja trimestral australiana. Beer2 lt - window 40 ausbeer, início 1992 41 ma4 ltm 40 beer2, ordem 4. center FALSE 41 ma2x4 ltm 40 beer2, ordem 4. center TRUE 41 A notação 2times4-MA na última coluna significa um 4-MA Seguido por um 2-MA. Os valores na última coluna são obtidos tomando uma média móvel de ordem 2 dos valores na coluna anterior. Por exemplo, os dois primeiros valores na coluna 4-MA são 451,2 (443410420532) / 4 e 448,8 (410420532433) / 4. O primeiro valor na coluna 2times4-MA é a média destes dois: 450,0 (451.2448.8) / 2. Quando um 2-MA segue uma média móvel de ordem par (como 4), é chamado de média móvel centrada de ordem 4. Isto é porque os resultados são agora simétricos. Para ver que este é o caso, podemos escrever o 2times4-MA da seguinte forma: begin hat amp frac Bigfrac (y y y y) frac (y y y y) Big frac fray frac14y frac14y frac14y frac18y. Fim É agora uma média ponderada das observações, mas é simétrica. Outras combinações de médias móveis também são possíveis. Por exemplo, um 3 x 3 MA é frequentemente utilizado e consiste numa média móvel de ordem 3 seguida por outra média móvel de ordem 3. Em geral, uma ordem par MA deve ser seguida por uma ordem par MA para torná-lo simétrico. Similarmente, uma ordem ímpar MA deve ser seguida por uma ordem ímpar MA. Estimativa do ciclo de tendência com dados sazonais O uso mais comum de médias móveis centradas é estimar o ciclo de tendência a partir de dados sazonais. Considere o 2x4-MA: fracasso do chapéu frac14y frac14y frac14y frac18y. Quando aplicado a dados trimestrais, cada trimestre do ano recebe igual peso, uma vez que o primeiro eo último termo se aplicam ao mesmo trimestre em anos consecutivos. Conseqüentemente, a variação sazonal será média e os valores resultantes de hat t terão pouca ou nenhuma variação sazonal restante. Obter-se-ia um efeito semelhante utilizando uma mistura de 2 x 8-MA ou 2 x 12-MA. Em geral, uma m-MA 2x é equivalente a uma média móvel ponderada de ordem m1 com todas as observações tomando peso 1 / m, exceto para o primeiro e último termos que tomam pesos 1 / (2m). Portanto, se o período sazonal é par e de ordem m, use um m-MA de 2x para estimar o ciclo tendencial. Se o período sazonal é ímpar e de ordem m, use um m-MA para estimar o ciclo de tendência. Em particular, um 2 x 12-MA pode ser usado para estimar o ciclo de tendência de dados mensais e um 7-MA pode ser usado para estimar o ciclo tendência de dados diários. Outras escolhas para a ordem do MA normalmente resultarão em estimativas de ciclo de tendência sendo contaminadas pela sazonalidade nos dados. Exemplo 6.2 Fabricação de equipamento elétrico A Figura 6.9 mostra uma 2 x 12-MA aplicada ao índice de ordens de equipamentos elétricos. Observe que a linha lisa não mostra sazonalidade é quase o mesmo que o ciclo de tendência mostrado na Figura 6.2 que foi estimado usando um método muito mais sofisticado do que as médias móveis. Qualquer outra escolha para a ordem da média móvel (exceto 24, 36, etc.) teria resultado em uma linha suave que mostra algumas flutuações sazonais. Plot 40 elecequip, ylab quotNovas ordens indicequot. Col quotgrayquot, main quotred 41 Química média ponderada As médias combinadas das médias móveis resultam em médias móveis ponderadas. Por exemplo, o 2x4-MA discutido acima é equivalente a um 5-MA ponderado com pesos dados por frac, frac, frac, frac, frac. Em geral, uma m-MA ponderada pode ser escrita como hat t sum k aj y, onde k (m-1) / 2 e os pesos são dados por a, dots, ak. É importante que todos os pesos somem a um e que sejam simétricos para que aj a. O m-MA simples é um caso especial onde todos os pesos são iguais a 1 / m. Uma grande vantagem das médias móveis ponderadas é que elas produzem uma estimativa mais suave do ciclo tendencial. Em vez das observações que entram e que deixam o cálculo no peso cheio, seus pesos são aumentados lentamente e então lentamente diminuídos resultando em uma curva mais lisa. Alguns conjuntos específicos de pesos são amplamente utilizados. Algumas delas são dadas na Tabela 6. Médias de Movimentação e Médias Móveis Centradas Um par de pontos sobre a sazonalidade em uma série de tempo se repetem, mesmo que pareçam óbvios. Um deles é que o termo 8220season8221 não se refere necessariamente às quatro estações do ano que resultam da inclinação do eixo Earth8217s. Na análise preditiva, 8220season8221 muitas vezes significa exatamente isso, porque muitos dos fenômenos que estudamos variam com a progressão da primavera até o inverno: vendas de equipamentos de inverno ou verão, incidência de certas doenças generalizadas, eventos climáticos causados pela localização do Fluxo de jato e mudanças na temperatura da água no oceano Pacífico oriental, e assim por diante. Da mesma forma, eventos que ocorrem regularmente podem atuar como estações meteorológicas, embora tenham apenas uma ligação tênue com os solstícios e equinócios. Mudanças de oito horas em hospitais e fábricas muitas vezes se expressam na incidência de consumos e gastos de energia lá, uma estação é de oito horas de duração e as estações ciclo todos os dias, e não todos os anos. As datas de vencimento dos impostos indicam o início de uma inundação de dólares nos tesouros municipais, estaduais e federais, a estação pode ter um ano de duração (impostos sobre o rendimento das pessoas físicas), seis meses (impostos sobre a propriedade em muitos estados), trimestral ), e assim por diante. É um pouco estranho que tenhamos a palavra 8220season8221 para referir-nos geralmente ao período de tempo regularmente recorrente, mas não há um termo geral para o período de tempo durante o qual ocorre uma volta completa das estações. 8220Cycle8221 é possível, mas em analítica e previsão, esse termo geralmente é usado para significar um período de comprimento indeterminado, como um ciclo econômico. Na ausência de um termo melhor, eu usei o período que inclui 8222 neste capítulo e nos subseqüentes. Isso não é apenas reflexão terminológica. As maneiras pelas quais identificamos as estações e o período de tempo durante o qual as estações se transformam têm implicações reais, embora muitas vezes menores, sobre como medimos seus efeitos. As seções a seguir discutem como alguns analistas variam a maneira como calculam as médias móveis, de acordo com o número de temporadas é ímpar ou mesmo. Usando médias móveis em vez de médias simples Suponha que uma grande cidade está considerando a realocação de sua polícia de trânsito para melhor lidar com a incidência de condução, enquanto deficientes, que a cidade acredita que tem vindo a aumentar. Quatro semanas atrás, nova legislação entrou em vigor, legalizando a posse e uso recreativo de maconha. Desde então, o número diário de detenções de tráfego para DWI parece estar tendendo para cima. Complicando questões é o fato de que o número de prisões parece pico nas sextas-feiras e sábados. Para ajudar a planejar as necessidades de mão-de-obra no futuro, você gostaria de prever qualquer tendência subjacente que esteja sendo estabelecida. Você também gosta de tempo a implantação de seus recursos para ter em conta qualquer sazonalidade relacionada com o fim de semana que acontece. A Figura 5.9 tem os dados relevantes com os quais você tem que trabalhar. Figura 5.9 Com este conjunto de dados, cada dia da semana constitui uma estação. Mesmo observando apenas o gráfico da Figura 5.9. Você pode dizer que a tendência do número de prisões diárias é para cima. You8217ll tem que planejar para expandir o número de agentes de trânsito, e espero que a tendência de níveis logo em breve. Além disso, os dados confirmam a noção de que mais detenções ocorrem rotineiramente às sextas-feiras e aos sábados, então sua alocação de recursos precisa abordar esses picos. Mas você precisa para quantificar a tendência subjacente, para determinar quantos adicionais polícia você tem que trazer. Você também precisa quantificar o tamanho esperado dos picos de fim de semana, para determinar quantos policiais adicionais você precisa assistindo para drivers erráticos naqueles dias. O problema é que, como de ainda você don8217t saber quanto do aumento diário é devido à tendência e quanto é devido ao efeito fim de semana. Você pode começar por detrending a série de tempo. Mais cedo neste capítulo, em 8220Simple Seasonal Averages, 8221 você viu um exemplo de como desviar uma série de tempo para isolar os efeitos sazonais usando o método de médias simples. Nesta seção você verá como fazer isso usando médias móveis, provavelmente, a abordagem de médias móveis é usada com mais freqüência na análise preditiva do que a abordagem de médias simples. Existem várias razões para a maior popularidade das médias móveis, entre elas, que a abordagem das médias móveis não pede que você colapse seus dados no processo de quantificação de uma tendência. Lembre-se que o exemplo anterior tornou necessário colapsar médias trimestrais para médias anuais, calcular uma tendência anual e, em seguida, distribuir um quarto da tendência anual em cada trimestre no ano. Esse passo era necessário para eliminar a tendência dos efeitos sazonais. Em contraste, a abordagem das médias móveis permite que você detrend a série de tempo sem recorrer a esse tipo de maquinação. A Figura 5.10 mostra como a abordagem das médias móveis funciona no exemplo atual. Figura 5.10 A média móvel no segundo gráfico esclarece a tendência subjacente. A Figura 5.10 adiciona uma coluna de média móvel, e uma coluna para períodos sazonais específicos. Para o conjunto de dados da Figura 5.9. Ambas as adições requerem alguma discussão. Os picos em prisões que ocorrem nos fins de semana dá-lhe razão para acreditar que você está trabalhando com as estações que repetem uma vez por semana. Portanto, comece por obter a média para o período abrangente, ou seja, as primeiras sete temporadas, de segunda a domingo. A fórmula para a média na célula D5, a primeira média móvel disponível, é a seguinte: Essa fórmula é copiada e colada para baixo através da célula D29, então você tem 25 médias móveis com base em 25 execuções de sete dias consecutivos. Observe que, para mostrar as primeiras e as últimas observações na série de tempo, eu tenho escondido linhas de 10 a 17. Você pode exibi-los, se você quiser, neste livro capítulo8217s, disponível no site do editor8217s. Faça uma seleção múltipla de linhas visíveis 9 e 18, clique com o botão direito do mouse em um de seus cabeçalhos de linha e escolha Unhide no menu de atalho. Quando você oculta linhas de uma planilha de trabalho, como fez na Figura 5.10. Qualquer dados mapeados nas linhas ocultas também está oculto no gráfico. Os rótulos do eixo x identificam apenas os pontos de dados que aparecem no gráfico. Como cada média móvel na Figura 5.10 engloba sete dias, nenhuma média móvel é emparelhada com as três primeiras ou três últimas observações reais. Copiar e colar a fórmula na célula D5 um dia para a célula D4 é executado fora das observações 8212não há observação registrada na célula C1. Da mesma forma, não há média móvel registrada abaixo da célula D29. Copiar e colar a fórmula em D29 em D30 exigiria uma observação na célula C33, e nenhuma observação está disponível para o dia em que a célula representaria. Seria possível, naturalmente, encurtar o comprimento da média móvel para, digamos, cinco em vez de sete. Fazer assim significaria que as fórmulas de média móvel na Figura 5.10 poderiam começar na célula D4 em vez de D5. No entanto, neste tipo de análise, você quer que a duração da média móvel seja igual ao número de estações: sete dias em uma semana para eventos que se repetem semanalmente implica uma média móvel de comprimento sete e quatro trimestres em um ano para eventos que Recur anualmente implica uma média móvel de comprimento quatro. Em linhas semelhantes, geralmente quantificamos os efeitos sazonais de tal forma que eles totalizam a zero dentro do período abrangente. Como você viu na primeira seção deste capítulo, em médias simples, isso é feito calculando a média de (digamos) os quatro trimestres em um ano, e subtraindo a média para o ano de cada figura trimestral. Assim fazendo assegura que o total dos efeitos sazonais é zero. Por sua vez, that8217s útil porque ele coloca os efeitos sazonais em um efeito footing8212a verão de 11 é tão longe da média como um efeito de inverno de 821111. Se você quiser média de cinco estações em vez de sete para obter a sua média móvel, você8217re melhor Off encontrar um fenômeno que se repete a cada cinco temporadas em vez de cada sete. No entanto, quando você toma a média dos efeitos sazonais mais tarde no processo, essas médias são improváveis de somar a zero. É necessário, nesse ponto, recalibrar ou normalizar. As médias para que sua soma seja zero. Quando isso é feito, as médias sazonais médias expressam o efeito em um período de tempo de pertencer a uma estação particular. Uma vez normalizadas, as médias sazonais são denominadas os índices sazonais que este capítulo já mencionou várias vezes. Compreendendo Sazonais Específicos A Figura 5.10 também mostra o que são chamados de sazonalidade específica na coluna E. Eles são os que ficaram depois de subtrair a média móvel da observação real. Para ter uma noção do que os sazonais específicos representam, considere a média móvel na célula D5. É a média das observações em C2: C8. Os desvios de cada observação da média móvel (por exemplo, C2 8211 D5) são garantidos para somar a zero 8212 que é uma característica de uma média. Portanto, cada desvio expressa o efeito de estar associado a esse dia particular naquela semana particular. É um período sazonal específico, então específico, porque o desvio se aplica a essa segunda-feira ou terça-feira e assim por diante, e sazonal, porque neste exemplo tratamos cada dia como se fosse uma estação no período abrangente de uma semana. Como cada temporada específica mede o efeito de estar naquela época em relação à média móvel para esse grupo de (aqui) sete temporadas, você pode, em seguida, classificar os períodos sazonais específicos para uma determinada temporada (por exemplo, todas as sextas-feiras na sua estação). Séries temporais) para estimar que season8217s geral, em vez de efeito específico. Essa média não é confundida por uma tendência subjacente na série temporal, porque cada estação específica expressa um desvio de sua própria média móvel particular. Alinhando as Médias Móveis Há também a questão de alinhar as médias móveis com o conjunto de dados original. Na Figura 5.10. Alinhei cada média móvel com o ponto médio da gama de observações que inclui. Assim, por exemplo, a fórmula na célula D5 faz a média das observações em C2: C8 e alinhei-a com a quarta observação, o ponto médio da faixa média, colocando-a na linha 5. Esta disposição é denominada média móvel centrada . E muitos analistas preferem alinhar cada média móvel com o ponto médio das observações que médias. Tenha em mente que, neste contexto, 8220midpoint8221 refere-se ao meio de um período de tempo: quinta-feira é o ponto médio de segunda-feira a domingo. Ele não se refere à mediana dos valores observados, embora, obviamente, possa funcionar dessa maneira na prática. Outra abordagem é a média móvel à direita. Nesse caso, cada média móvel está alinhada com a observação final de que ela média 8212 e, portanto, trilhas por trás de seus argumentos. Este é frequentemente o arranjo preferido se você quiser usar uma média móvel como uma previsão, como é feito com suavização exponencial, porque sua média móvel final ocorre coincidente com a observação disponível final. Centered Moving Averages with Even Numbers of Seasons Normalmente, adotamos um procedimento especial quando o número de estações é mesmo em vez de estranho. Esse é o típico estado de coisas: tendem a haver números pares de estações no período abrangente para épocas típicas, como meses, trimestres e períodos quadrienais (para as eleições). A dificuldade com um número par de estações é que não há ponto médio. Dois não é o ponto médio de um intervalo começando em 1 e terminando em 4, e nenhum é 3 se pode ser dito ter um, seu ponto médio é 2.5. Seis não é o ponto médio de 1 a 12, e nem é 7 seu ponto médio puramente teórico é 6,5. Para agir como se houvesse um ponto médio, você precisará adicionar uma camada de média sobre as médias móveis. Consulte a Figura 5.11. Figura 5.11 O Excel oferece várias maneiras de calcular uma média móvel centrada. A idéia por trás dessa abordagem para obter uma média móvel centrada em um ponto médio existente, quando há um número par de estações, é puxar esse ponto médio para a frente por meia temporada. Você calcula uma média móvel que seria centrada em, digamos, o terceiro ponto no tempo se cinco estações em vez de quatro constituíam uma volta completa do calendário. Isso é feito tomando duas médias móveis consecutivas e fazendo a média deles. Assim, na Figura 5.11. Há uma média móvel na célula E6 que mede os valores em D3: D9. Como existem quatro valores sazonais em D3: D9, a média móvel em E6 é considerada como centrada na estação imaginária 2.5, meio ponto aquém da primeira temporada candidata disponível, 3. (As estações 1 e 2 não estão disponíveis como pontos médios para Falta de dados para a média antes da primeira temporada). Note-se, no entanto, que a média móvel na célula E8 média os valores em D5: D11, o segundo através do quinto na série temporal. Essa média é centrada no (imaginário) ponto 3.5, um período completo à frente da média centrada em 2,5. Ao calcular a média das duas médias móveis, então o pensamento vai, você pode puxar o ponto central da primeira média móvel para a frente por meio ponto, de 2,5 para 3. That8217s o que as médias na coluna F da Figura 5.11 fazer. A célula F7 fornece a média das médias móveis em E6 e E8. E a média em F7 é alinhada com o terceiro ponto de dados na série de tempo original, na célula D7, para enfatizar que a média é centrada nessa temporada. Se você expandir a fórmula na célula F7, bem como as médias móveis nas células E6 e E8, você verá que ele se torna uma média ponderada dos primeiros cinco valores na série de tempo, com o primeiro eo quinto valor dado um peso De 1 e o segundo a quarto valores dado um peso de 2. Isso nos leva a uma maneira mais rápida e simples de calcular uma média móvel centrada com um número par de estações. Ainda na Figura 5.11. Os pesos são armazenados na gama H3: H11. Esta fórmula retorna a primeira média móvel centrada, na célula I7: Essa fórmula retorna 13.75. Que é idêntico ao valor calculado pela fórmula de média dupla na célula F7. Fazendo a referência aos pesos absolutos, por meio dos sinais de dólar em H3: H11. Você pode copiar a fórmula e colá-lo para baixo, na medida do necessário para obter o resto das médias móveis centradas. Detrender a série com médias móveis Quando você tiver subtraído as médias móveis das observações originais para obter os valores sazonais específicos, você removeu a tendência subjacente da série. O que é deixado nos sazonais específicos é normalmente uma série estacionária, horizontal, com dois efeitos que fazem com que os sazonais específicos partam de uma linha absolutamente reta: os efeitos sazonais e erro aleatório nas observações originais. A Figura 5.12 mostra os resultados para este exemplo. Figura 5.12 Os efeitos sazonais específicos para sexta-feira e sábado permanecem claros na série detrended. O gráfico superior na Figura 5.12 mostra as observações diárias originais. Tanto a tendência ascendente geral como os picos sazonais de fim de semana são claros. O gráfico inferior mostra os dados sazonais específicos: o resultado de desviar da série original com um filtro de média móvel, conforme descrito anteriormente em 8220. Compreendendo Sazonais Específicos.8221 Você pode ver que a série detrended é agora praticamente horizontal (uma linha de tendência linear para os sazonais específicos Tem uma ligeira descida), mas os picos sazonais de sexta e sábado ainda estão no lugar. O próximo passo é ultrapassar os sazonais específicos para os índices sazonais. Consulte a Figura 5.13. Figura 5.13 Os efeitos sazonais específicos são primeiro calculados pela média e depois normalizados para atingir os índices sazonais. Na Figura 5.13. Os sais sazonais específicos na coluna E são rearranjados na forma tabular ilustrada na gama H4: N7. O objetivo é simplesmente facilitar o cálculo das médias sazonais. Essas médias são mostradas em H11: N11. No entanto, os números em H11: N11 são médias, não desvios de uma média, e portanto podemos esperar que eles somem a zero. Nós ainda precisamos ajustá-los para que eles expressam desvios de um grande meio. Essa grande média aparece na célula N13, e é a média das médias sazonais. We can arrive at the seasonal indexes by subtracting the grand mean in N13 from each of the seasonal averages. The result is in the range H17:N17. These seasonal indexes are no longer specific to a particular moving average, as is the case with the specific seasonals in column E. Because they8217re based on an average of each instance of a given season, they express the average effect of a given season across the four weeks in the time series. Furthermore, they are measures of a season8217s8212here, a day8217s8212effect on traffic arrests vis-224-vis the average for a seven-day period. We can now use those seasonal indexes to deseasonalize the series. We8217ll use the deseasonalized series to get forecasts by way of linear regression or Holt8217s method of smoothing trended series (discussed in Chapter 4). Then we simply add the seasonal indexes back into the forecasts to reseasonalize them. All this appears in Figure 5.14 . Figure 5.14 After you have the seasonal indexes, the finishing touches as applied here are the same as in the method of simple averages. The steps illustrated in Figure 5.14 are largely the same as those in Figures 5.6 and 5.7. discussed in the following sections. Deseasonalizing the Observations Subtract the seasonal indexes from the original observations to deseasonalize the data. You can do this as shown in Figure 5.14. in which the original observations and the seasonal indexes are arranged as two lists beginning in the same row, columns C and F. This arrangement makes it a little easier to structure the calculations. You can also do the subtraction as shown in Figure 5.6. in which the original quarterly observations (C12:F16), the quarterly indexes (C8:F8), and the deseasonalized results (C20:F24) are shown in a tabular format. That arrangement makes it a little easier to focus on the seasonal indexes and the deseasoned quarterlies. Forecast from the Deseasonalized Observations In Figure 5.14. the deseasonalized observations are in column H, and in Figure 5.7 they8217re in column C. Regardless of whether you want to use a regression approach or a smoothing approach to the forecast, it8217s best to arrange the deseasonalized observations in a single-column list. In Figure 5.14. the forecasts are in column J. The following array formula is entered in the range J2:J32. Earlier in this chapter, I pointed out that if you omit the x-values argument from the TREND() function8217s arguments, Excel supplies the default values 1 . 2. n . where n is the number of y-values. In the formula just given, H2:H32 contains 31 y-values. Because the argument normally containing the x-values is missing, Excel supplies the default values 1 . 2. 31 . Those are the values we would want to use anyway, in column B, so the formula as given is equivalent to TREND(H2:H32,B2:B32) . And that8217s the structure used in D5:D24 of Figure 5.7 : Making the One-Step-Ahead Forecast So far you have arranged for forecasts of the deseasonalized time series from t 1 through t 31 in Figure 5.14. and from t 1 through t 20 in Figure 5.7. These forecasts constitute useful information for various purposes, including assessing the accuracy of the forecasts by means of an RMSE analysis. But your main purpose is forecasting at least the next, as yet unobserved time period. To get that, you could first forecast from the TREND() or LINEST() function if you8217re using regression, or from the exponential smoothing formula if you8217re using Holt8217s method. Then you can add the associated seasonal index to the regression or smoothing forecast, to get a forecast that includes both the trend and the seasonal effect. In Figure 5.14. you get the regression forecast in cell J33 with this formula: In this formula, the y-values in H2:H32 are the same as in the other TREND() formulas in column J. So are the (default) x-values of 1 through 32 . Now, though, you supply a new x-value as the function8217s third argument, which you tell TREND() to look for in cell B33. It8217s 32 . the next value of t . And Excel returns the value 156.3 in cell J33. The TREND() function in cell J33 is telling Excel, in effect, 8220Calculate the regression equation for the values in H2:H32 regressed on the t values 1 through 31 . Apply that regression equation to the new x-value of 32 and return the result.8221 You8217ll find the same approach taken in cell D25 of Figure 5.7. where the formula to get the one-step-ahead forecast is this: Adding the Seasonal Indexes Back In The final step is to reseasonalize the forecasts by adding the seasonal indexes to the trend forecasts, reversing what you did four steps back when you subtracted the indexes from the original observations. This is done in column F in Figure 5.7 and column K in Figure 5.14 . Don8217t forget to add the appropriate seasonal index for the one-step-ahead forecast, with the results shown in cell F25 in Figure 5.7 and in cell K33 in Figure 5.14. (I8217ve shaded the one-step-ahead cells in both Figure 5.7 and Figure 5.14 to highlight the forecasts.) You can find charts of three representations of the traffic arrest data in Figure 5.15. the deseasonalized series, the linear forecast from the deseasonalized data, and the reseasonalized forecasts. Note that the forecasts incorporate both the general trend of the original data and its Friday/Saturday spikes. Figure 5.15 Charting the forecasts.
No comments:
Post a Comment